Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Science ; 382(6674): eadd7795, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38033054

RESUMO

Photolyases, a ubiquitous class of flavoproteins, use blue light to repair DNA photolesions. In this work, we determined the structural mechanism of the photolyase-catalyzed repair of a cyclobutane pyrimidine dimer (CPD) lesion using time-resolved serial femtosecond crystallography (TR-SFX). We obtained 18 snapshots that show time-dependent changes in four reaction loci. We used these results to create a movie that depicts the repair of CPD lesions in the picosecond-to-nanosecond range, followed by the recovery of the enzymatic moieties involved in catalysis, completing the formation of the fully reduced enzyme-product complex at 500 nanoseconds. Finally, back-flip intermediates of the thymine bases to reanneal the DNA were captured at 25 to 200 microseconds. Our data cover the complete molecular mechanism of a photolyase and, importantly, its chemistry and enzymatic catalysis at work across a wide timescale and at atomic resolution.


Assuntos
Proteínas Arqueais , Reparo do DNA , Desoxirribodipirimidina Fotoliase , Methanosarcina , Dímeros de Pirimidina , Proteínas Arqueais/química , Catálise , Cristalografia/métodos , Desoxirribodipirimidina Fotoliase/química , DNA/química , DNA/efeitos da radiação , Methanosarcina/enzimologia , Conformação Proteica , Dímeros de Pirimidina/química , Raios Ultravioleta
3.
Sci Rep ; 13(1): 16682, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37794070

RESUMO

An animal-like cryptochrome derived from Chlamydomonas reinhardtii (CraCRY) is a bifunctional flavoenzyme harboring flavin adenine dinucleotide (FAD) as a photoreceptive/catalytic center and functions both in the regulation of gene transcription and the repair of UV-induced DNA lesions in a light-dependent manner, using different FAD redox states. To address how CraCRY stabilizes the physiologically relevant redox state of FAD, we investigated the thermodynamic and kinetic stability of the two-electron reduced anionic FAD state (FADH-) in CraCRY and related (6-4) photolyases. The thermodynamic stability of FADH- remained almost the same compared to that of all tested proteins. However, the kinetic stability of FADH- varied remarkably depending on the local structure of the secondary pocket, where an auxiliary chromophore, 8-hydroxy-7,8-didemethyl-5-deazariboflavin (8-HDF), can be accommodated. The observed effect of 8-HDF uptake on the enhancement of the kinetic stability of FADH- suggests an essential role of 8-HDF in the bifunctionality of CraCRY.


Assuntos
Chlamydomonas reinhardtii , Desoxirribodipirimidina Fotoliase , Animais , Criptocromos/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Oxirredução , Chlamydomonas reinhardtii/metabolismo , Desoxirribodipirimidina Fotoliase/metabolismo
4.
Nat Chem ; 14(6): 677-685, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35393554

RESUMO

Flavin coenzymes are universally found in biological redox reactions. DNA photolyases, with their flavin chromophore (FAD), utilize blue light for DNA repair and photoreduction. The latter process involves two single-electron transfers to FAD with an intermittent protonation step to prime the enzyme active for DNA repair. Here we use time-resolved serial femtosecond X-ray crystallography to describe how light-driven electron transfers trigger subsequent nanosecond-to-microsecond entanglement between FAD and its Asn/Arg-Asp redox sensor triad. We found that this key feature within the photolyase-cryptochrome family regulates FAD re-hybridization and protonation. After first electron transfer, the FAD•- isoalloxazine ring twists strongly when the arginine closes in to stabilize the negative charge. Subsequent breakage of the arginine-aspartate salt bridge allows proton transfer from arginine to FAD•-. Our molecular videos demonstrate how the protein environment of redox cofactors organizes multiple electron/proton transfer events in an ordered fashion, which could be applicable to other redox systems such as photosynthesis.


Assuntos
Desoxirribodipirimidina Fotoliase , Prótons , Arginina/metabolismo , Cristalografia , Desoxirribodipirimidina Fotoliase/química , Desoxirribodipirimidina Fotoliase/genética , Desoxirribodipirimidina Fotoliase/metabolismo , Transporte de Elétrons , Elétrons , Flavina-Adenina Dinucleotídeo/química , Flavina-Adenina Dinucleotídeo/metabolismo , Flavinas , Oxirredução
5.
Sci Rep ; 12(1): 5084, 2022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-35332186

RESUMO

(6-4) Photolyases ((6-4) PLs) are ubiquitous photoenzymes that use the energy of sunlight to catalyze the repair of carcinogenic UV-induced DNA lesions, pyrimidine(6-4)pyrimidone photoproducts. To repair DNA, (6-4) PLs must first undergo so-called photoactivation, in which their excited flavin adenine dinucleotide (FAD) cofactor is reduced in one or two steps to catalytically active FADH- via a chain of three or four conserved tryptophan residues, transiently forming FAD•-/FADH- ⋯ TrpH•+ pairs separated by distances of 15 to 20 Å. Photolyases and related photoreceptors cryptochromes use a plethora of tricks to prevent charge recombination of photoinduced donor-acceptor pairs, such as chain branching and elongation, rapid deprotonation of TrpH•+ or protonation of FAD•-. Here, we address Arabidopsis thaliana (6-4) PL (At64) photoactivation by combining molecular biology, in vivo survival assays, static and time-resolved spectroscopy and computational methods. We conclude that At64 photoactivation is astonishingly efficient compared to related proteins-due to two factors: exceptionally low losses of photoinduced radical pairs through ultrafast recombination and prevention of solvent access to the terminal Trp3H•+, which significantly extends its lifetime. We propose that a highly conserved histidine residue adjacent to the 3rd Trp plays a key role in Trp3H•+ stabilization.


Assuntos
Arabidopsis , Desoxirribodipirimidina Fotoliase , Arabidopsis/metabolismo , Desoxirribodipirimidina Fotoliase/genética , Transporte de Elétrons , Elétrons , Flavina-Adenina Dinucleotídeo/metabolismo , Oxirredução , Triptofano/metabolismo
7.
Photochem Photobiol Sci ; 20(7): 875-887, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34120300

RESUMO

Photolyases are flavoenzymes responsible for light-driven repair of carcinogenic crosslinks formed in DNA by UV exposure. They possess two non-covalently bound chromophores: flavin adenine dinucleotide (FAD) as a catalytic center and an auxiliary antenna chromophore that harvests photons and transfers solar energy to the catalytic center. Although the energy transfer reaction has been characterized by time-resolved spectroscopy, it is strikingly important to understand how well natural biological systems organize the chromophores for the efficient energy transfer. Here, we comprehensively characterized the binding of 8-hydroxy-7,8-didemethyl-5-deazariboflavin (8-HDF) to Xenopus (6-4) photolyase. In silico simulations indicated that a hydrophobic amino acid residue located at the entrance of the binding site dominates translocation of a loop upon binding of 8-HDF, and a mutation of this residue caused dysfunction of the efficient energy transfer in the DNA repair reaction. Mutational analyses of the protein combined with modification of the chromophore suggested that Coulombic interactions between positively charged residues in the protein and the phenoxide moiety in 8-HDF play a key role in accommodation of 8-HDF in the proper direction. This study provides a clear evidence that Xenopus (6-4) photolyase can utilize 8-HDF as the light-harvesting chromophore. The obtained new insights into binding of the natural antenna molecule will be helpful for the development of artificial light-harvesting chromophores and future characterization of the energy transfer in (6-4) photolyase by spectroscopic studies.


Assuntos
Desoxirribodipirimidina Fotoliase/química , Riboflavina/análogos & derivados , Animais , Desoxirribodipirimidina Fotoliase/metabolismo , Transferência de Energia , Riboflavina/química , Riboflavina/metabolismo , Xenopus laevis
8.
J Phys Chem B ; 123(24): 5059-5068, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31117614

RESUMO

Photolyases (PLs) are flavoproteins able to repair cross-links formed between adjacent pyrimidine bases in DNA in a light-dependent manner via an electron transfer. The catalytically active redox state of the flavin chromophore for the DNA repair is a fully reduced form of flavin adenine dinucleotide (FADH-). PLs and their relative, cryptochromes (CRYs), share a physicochemical process attributable to the light-dependent reduction of the chromophore via an ultrafast successive electron transfer through exclusively conserved three tryptophan side chains. In some (6-4) PLs and animal CRYs, an additional tryptophan participates in this photoactivation process. In a search for the intrinsic difference between the Trp triad and tetrad, a water molecule proximal to the second and third Trp was found in the reported crystal structure of Arabidopsis thaliana (6-4) PL. Here, we investigated the involvement of the water molecule in photoactivation. Molecular dynamics simulations indicated that the water molecule is stably captured in the binding site, while mutation of S412 increased water displacement from the binding site. Photochemical analysis of recombinant proteins revealed that the S412A mutation significantly decelerated the FAD photoreduction as compared to the wild type. The hydrogen-bonding network including the water molecule would play a key role in the stabilization of the FAD-Trp radical pair.


Assuntos
Arabidopsis/enzimologia , Desoxirribodipirimidina Fotoliase/metabolismo , Água/metabolismo , Desoxirribodipirimidina Fotoliase/química , Simulação de Dinâmica Molecular , Estrutura Molecular , Processos Fotoquímicos , Água/química
9.
Biochemistry ; 56(40): 5356-5364, 2017 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-28880077

RESUMO

(6-4) photolyases [(6-4)PLs] are flavoproteins that use blue light to repair the ultraviolet-induced pyrimidine(6-4)pyrimidone photoproduct in DNA. Their flavin adenine dinucleotide (FAD) cofactor can be reduced to its repair-active FADH- form by a photoinduced electron transfer reaction. In animal (6-4)PLs, a chain of four Trp residues was suggested to be involved in a stepwise transfer of an oxidation hole from the flavin to the surface of the protein. Here, we investigated the effect of mutation of the fourth Trp on the DNA photorepair activity of Xenopus laevis (6-4)PL (Xl64) in bacterial cells. The photoreduction and photorepair properties of this mutant protein were independently characterized in vitro. Our results demonstrate that the mutation of the fourth Trp in Xl64 drastically impairs the DNA repair activity in cells and that this effect is due to the inhibition of the photoreduction process. We thereby show that the photoreductive formation of FADH- through the Trp tetrad is essential for the biological function of the animal (6-4)PL. The role of the Trp cascade, and of the fourth Trp in particular, is discussed.


Assuntos
Reparo do DNA , Desoxirribodipirimidina Fotoliase/química , Desoxirribodipirimidina Fotoliase/metabolismo , Escherichia coli/genética , Triptofano/metabolismo , Xenopus laevis , Animais , Arabidopsis/enzimologia , Desoxirribodipirimidina Fotoliase/genética , Transporte de Elétrons , Escherichia coli/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...